# Field Testing of an FGD Additive for Enhanced Mercury Control



Gary Blythe URS Corporation



NETL Project DE-FC26-04NT42309 COR: Charles Miller



EPRI Project Manager: Richard Rhudy





### **Project Overview**

- Field tests (pilot to full scale) of Degussa's TMT 15 additive for optimizing Hg capture by wet FGD
  - Prevent re-emissions
  - Minimize Hg in gypsum byproduct
- Co-funded by EPRI, TXU, Southern Company
- Test sites:
  - TXU Monticello (pilot wet FGD)
  - AEP Conesville (has dropped out due to recent OH results showing no re-emissions from Mg-lime FGD)
  - Southern Co. Plant Yates (pilot and full-scale JBR tests)

### **Degussa TMT-15**

- 15 wt% aqueous solution of trimercapto-striazine, tri-sodium salt (C<sub>3</sub>N<sub>3</sub>S<sub>3</sub>Na<sub>3</sub>)
- Primarily used to precipitate divalent heavy metals from wastewaters

$$3 \text{ Hg}^{+2} + 2 \text{ TMTNa}_3 \rightarrow \text{Hg}_3 \text{TMT}_2 + 6 \text{ Na}^+$$

 Currently used in 100's of incineration plants worldwide to precipitate Hg before re-emissions reactions can occur in wet scrubbers

### **Hg-TMT Precipitates**

- Divalent cation to trivalent anion precipitation leads to "cross linking", produces precipitates large enough to filter, but much smaller than the bulk of the FGD solids
- Digestion of the Hg-TMT precipitate requires aqua regia under heat and pressure (i.e., more stable at low pH than other sulfides)
- Hg-TMT precipitates are thermally stable to 250°C (480°F)
  - Gypsum is calcined at 300°F to make wallboard

### **TMT Properties**

- Low toxicity to fish, water fleas, algae, etc.
- Mild irritant to skin, irritant to eyes
- No special PPE other than gloves, glasses or goggles with close-fitting side shields
- Not considered hazardous for transportation purposes

### Potential Economics for Enhanced Hg Co-removal Using TMT-15

- TMT-15 costs about \$4/kg as solution
- To prevent re-emissions:
  - Assume 20 μg/Nm³ Hg in flue gas, 50% oxidized
  - Assume re-emissions at 2 μg/Nm³ Hg
  - If TMT-15 is effective at 10x stoichiometric amount, cost is <\$500/lb additional Hg removed</li>
- To lower Hg content of gypsum (same assumptions as above):
  - Annual value of gypsum for 500-MW plant is \$1.25 million (\$5/ton)
  - Annual TMT-15 cost ~\$30,000 or less

### **Testing Completed to Date**

- First week of 2-week effort on Monticello pilot wet FGD conducted in April
  - Did not see any Hg re-emissions with Hg SCEM under baseline (no catalyst upstream, no TMT) conditions
  - Decided to instead focus on ability to produce low Hg content gypsum

### **Testing Completed to Date**

- Delayed 2<sup>nd</sup> week of testing (week-long steady state test at optimum TMT dosage)
  - Since no re-emissions were seen (immediate SCEM feedback) needed to turn around analytical data on parametric test samples
  - Pilot wet FGD does not have primary dewatering
    - Need to add field separate gypsum from high Hgcontent fines
    - New EPRI project is adding pump, hydrocyclones and tank to pilot wet FGD system for primary dewatering

# Interim Results of Parametric Tests at Monticello

- No apparent affect of additive on Hg removal across FGD
- Saw decrease in FGD liquor Hg conc. with TMT
  - No apparent TMT dosage effect
- Separated gypsum from fines in the laboratory by settling
  - Modest decrease in gypsum Hg conc. with TMT
  - No apparent TMT dosage effect
  - Effectiveness of TMT may be masked by contamination of gypsum with fines in settled samples
  - Need field dewatering to determine true ability to separate high-Hg salts from gypsum

#### **FGD Pilot Unit at Monticello Station**



TMT Injection

### **FGD Liquor Hg Concentrations**



### Settled FGD Solids Sample Hg Concentrations

| TMT Dosage (ml/ton of coal) | Wt% gypsum phase in slurry | Gypsum Hg<br>Content, μg/g<br>(% of Hg in<br>slurry) | Wt% fines in slurry | Fines Hg Content, µg/g (% of Hg in slurry) |
|-----------------------------|----------------------------|------------------------------------------------------|---------------------|--------------------------------------------|
| 0                           | 11.6                       | 1.7 (53%)                                            | 0.3                 | 55 (44%)                                   |
| 5                           | 9.2                        | 1.2 (33%)                                            | 0.5                 | 39 (65%)                                   |
| 10                          | 10.7                       | 1.2 (36%)                                            | 0.3                 | 75 (62%)                                   |
| 20                          | 10.0                       | 1.0 (33%)                                            | 0.4                 | 52 (63%)                                   |
| 40                          | 9.3                        | 1.2 (36%)                                            | 0.3                 | 57 (61%)                                   |

# Example PSD for Gypsum and Fines Phases (5 ml/ton TMT-15 dosage)

TMT Test 1 PSD Data



Diameter, microns

### **Future Testing Plans**

- Will complete second week of tests at Monticello when dewatering equipment is ready
- Pilot JBR parametric tests planned for Plant Yates in early August
- Full-scale JBR steady state test planned for Plant Yates in the fall
- Need replacement for AEP Conesville
  - Desire a site with known, significant re-emissions levels
  - Mg-lime FGD with natural oxidation, no SCR in service?

# Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors



David W. DeBerry, Ph.D.

Gary Blythe

URS Corporation

NETL Project DE-FC26-04NT42314 COR: Sara Pletcher

**EPRI Project Manager: Richard Rhudy** 





#### Introduction

- Project Goal develop a fundamental understanding of Hg "re-emissions" from wet FGD systems
  - Seen as FGD outlet Hg<sup>0</sup> concentration > inlet Hg<sup>0</sup>
  - Apparent reduction of Hg<sup>+2</sup> removed in FGD absorber
  - Limits overall Hg removal by FGD system
- Technical Approach conduct kinetics experiments, kinetics modeling, and bench-scale wet FGD model validation tests
- Expected Benefits the ability to predict FGD reemissions, and optimize FGD conditions to minimize or eliminate

### **Main Project Elements**

- Measure kinetics using both spectroscopy of the Hg<sup>2+</sup>-Sulfite complex reactants, and production / stripping of Hg<sup>o</sup>
- Extend reaction conditions to include presence of chloride, thiosulfate and additives, and into the FGD pH region
- Construct a kinetics model which describes the results
- Test the model using the URS bench scale FGD

### Main Chemical Reactions for Hg Emission without Chloride

- Overall reaction:
  - $Hg^{2+}$  +  $HSO_3^{-}$  +  $H_2O$  →  $Hg^{0}$  +  $SO_4^{2-}$  + 3  $H^{+}$
- Main pathway is through mercuric-sulfite complexes:
  - Hg<sup>2+</sup> + SO<sub>3</sub><sup>2-</sup> ↔ HgSO<sub>3</sub>
  - HgSO<sub>3</sub> + SO<sub>3</sub><sup>2-</sup> ↔ Hg(SO<sub>3</sub>)<sub>2</sub><sup>2-</sup>
- Equilibrium favors Hg(SO<sub>3</sub>)<sub>2</sub><sup>2-</sup> in presence of excess sulfite
- But only HgSO<sub>3</sub> decomposes to give reduction of Hg<sup>2+</sup>:
  - $HgSO_3 + H_2O \rightarrow Hg^{\circ}$ ↑ +  $SO_4^{2-}$  + 2 H<sup>+</sup>

# URS UV/Visible Spectrophotometer



### **Example Spectra and Rate Curve**



## Effect of pH on Rate Curves without Chloride. 1.0 mM sulfite, 55° C, 40 microM Hg<sup>2+</sup>



# Effect of sulfite on rate curves without chloride; pH 3.9



### Effect of Chloride on Rate Curve at pH 3.0 and 1.0 mM Sulfite



# Adding chloride during the run; pH 3.0; 1.0 mM sulfite



# Reaction Mechanism Observations

- Chloride evidently causes a change of mechanism - new intermediate, CIHgSO<sub>3</sub><sup>-</sup>
- But also observe complex "composite" reaction behavior without chloride
- "Slow" reaction conditions tend to give complex response such as a large increase in reaction rate after an initial "induction time"
- Several factors affecting this behavior are under investigation

### Induction Time Behavior in Chloride Solutions



# Stripping Method for Measuring Hg<sup>0</sup> Emissions from Test Solutions

- Continuously measures Hg<sup>0</sup> in gas phase as it is emitted following Hg<sup>+2</sup> injection and stripping from reactor
- Able to use low "FGD levels" of Hg<sup>2+</sup> in reactor:
   0.5 2 micromolar
- Getting close material balances on Hg<sup>2+</sup> added, Hg<sup>0</sup> measured in gas phase, and Hg left in liquid (which is usually negligible)
- Exponential decay rates are independent of initial Hg<sup>2+</sup> concentration, matching spectroscopic results

### Hg<sup>0</sup> Stripping Kinetics Apparatus



### Stripping Runs at Different Initial Hg<sup>2+</sup> Concentrations



### Effect of Chloride on Hg<sup>0</sup> Stripping Kinetics



### **Kinetics Modeling**

- URS modeling software maintains database of reactions, rate constants, and reaction conditions - initial concentrations, pH, temperature
- Calculates concentration-time profiles for all chemical species and intermediates
- Develop model by comparing experimental and calculated results while varying rate parameters until results match experiment over a wide range of conditions

### **Major Reaction Pathways**



### **Project Status and Conclusions**

- Developed experimental methods for following reactants and products independently
- Determining effects of pH, sulfite, temperature, ionic strength, and other "FGD" components on reaction rates
- Chloride has major effects on reaction rates and mechanism
- New reaction intermediates proposed; in process of constructing model using these mechanisms